New Bis(benzene-1,2-dithiolato)Ni(II) Complexes Having Intense Near-Infrared Absorptions¹⁾

New bis(benzene-1,2-dithiolato)Ni(II)•n-Bu $_4$ N having one or two N,N-dimethylamino substituent(s) were prepared. The main characteristic in their electronic absorptions was the intense near-infrared absorption band with a maximum of intensity at 990 - 1163 nm.

Dithiolato-nickel complexes attract strong attentions because of their unique physicochemical properties and possible applications to low-dimensional conductors, $^{1}\text{O}_{2}$ quenchers or others. ^{2}O One of the main characteristics associated with these interesting properties of such complexes, e.g., of bis(benzene-1,2-dithiolato)-Ni(II), is the electronic absorptions with the maximum of intensity in the near-infrared (hereafter abbreviated as NIR) region, ^{3}O reflected by the small $2b_{1u}(L)-3b_{2g}(L)$ transition energy(ΔE_{NIR}). For the most of these Ni complexes, however, the NIR absorption occurs at wavelength much shorter than 1 μm , suggesting the need of further studies, particularly on the relationship between structures of Ni complexes and ΔE_{NIR} or properties.

We now report a new family of bis(benzene-1,2-dithiolato)Ni(II), 1a-c, which carry NMe₂ substituent(s) at 4- (and 5-) position(s) of benzene- or toluene-1,2-dithiolato ligand (see Scheme 1). The NMe₂ substituent was found very effective to red-shift $\lambda_{\text{max}}^{\text{NIR}}$ of 1a-c, among which bis(4,5-bis-N,N-dimethylaminobenzene-1,2-dithiolato)Ni(II)·n-Bu₄N (1c) was particularly interesting to exhibit the NIR absorption at 1163 nm. Its ΔE_{NIR} of 8.6×10^3 cm⁻¹ is the smallest value among those of bis(benzenedithiolato)Ni complexes ever reported.

SBu SBu 1) Na, liq. NH₃
2) NiCl₂, NaOEt
$$n$$
-Bu₄NBr

2a-c

a) R¹ = NMe₂; R² = H
b) R¹ = NMe₂; R² = Me
c) R¹ = R² = NMe₂

Scheme 1.

1374 Chemistry Letters, 1987

i) $\mathrm{Br_2}\text{-AgSO}_4$ ii) $\mathrm{HNO_3}\text{-H_2SO}_4$ iii) $\mathrm{Fe}\text{-HCl}$ iv) $\mathrm{Me_2SO}_4$ v) CuSBu

Scheme 2.

1,2-Bisthioethers(2a-c), the precursors to the corresponding dithio ligands, were prepared from 4-bromo-N,N-dimethylaniline(3a) or 2-methyl-4-bromo-N,N-dimethylaniline(3b) as shown in Scheme 2. Spectroscopic data for 2a-c were satisfactory (see Note 5).

3,4-Bis(n-butylsulfenyl)-N,N-dimethylaniline, 2a, was treated with 3 equiv. amount of Na in liq. $\mathrm{NH_3}^{.6}$ After the decomposition of excess Na with $\mathrm{NH_4Cl}$ followed by the evaporation of $\mathrm{NH_3}$, the residual dithiol was treated with (1) $\mathrm{NiCl_2}$ (0.5 equiv.)-NaOEt(2 equiv.) then (2) $\mathrm{n-Bu_4N^+Br^-}$ under Ar stream. After the air oxidation for overnight, dark green needles of bis(4-N,N-dimethylaminobenzene-1,2-dithiolato)Ni(II)·n-Bu₄N (la) was obtained by recrystallization from CHCl₃-EtOH. In FAB-MS spectrum, la exhibited a M+H⁺ peak at 667 m/e, and other physical data were also satisfactory, supporting the structure of la (see Table 1).

The most significant characteristic of Ni complex la was the very intense NIR absorption, $\lambda_{\text{max}}^{\text{NIR}}$ of 1055 nm (ϵ 15400) (see also Fig. 1). Apparently, the NMe₂ substitution onto the benzene-1,2-dithiolato ligand has shifted the original NIR band ($2b_{1u}(L)$ - $3b_{2g}(L)$ transition⁴⁾) to the much longer wavelength, since the corresponding parent Ni(II) complex, ($C_6H_4S_2$)₂Ni(II)·n-Bu₄N, exhibits the NIR absorption band at $\lambda_{\text{max}}^{\text{NIR}}$ of 881 nm.^{2a)}

To investigate the red-shift of NIR absorption by NMe_2 substitution in detail, the NMe_2 group was introduced into the 5-position of bis(4-methylbenzene-1,2-dithiolato)Ni(II) or bis(4-N,N-dimethylaminobenzene-1,2-dithiolato)Ni(II) ($\frac{1}{12}$)

Table 1. Properties of New Bis (benzene-1,2-dithiolato) Ni(II) · n-Bu_AN, la-c

	Mp θ _m /°C	IR(KBr) v/cm ⁻¹	UV - VIS in $CHCl_3$ /nm (ϵ)
la ∼	172.5-173	430 335	264 (54400) 316 (42600)
lb ≈	188-189	460 360	460 (2500) a) 264 (50600)
lc	182-184 (dec)	480 345	318 (33100) 368 (10700) a) 276 (53500)
~			318 (56600)

a) Shoulder.

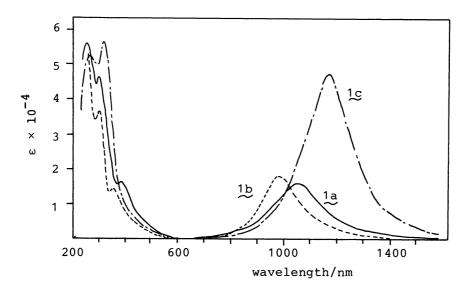


Fig. 1. The electronic absorption spectra of 1a-c in the UV-VIS-NIR region.

to give 1b or 1c, respectively (see Scheme 1 and Table 1). The NIR transitions observed for 1b and 1c were $\lambda_{\text{max}}^{\text{NIR}}$ = 990 nm (ϵ 17400) and 1163 nm (ϵ 46500), respectively (see also Fig. 1), strongly supporting the NMe₂ effect of decreasing the NIR transition energy. This decrease of ΔE_{NIR} probably comes from the effective conjugation between the NMe₂ moiety and the benzene-1,2-dithiolato ligand, as judged from the polarographic potential $E_{1/2}$ for the redox reaction, $[\text{NiL}_2]^{-1} \Longrightarrow [\text{NiL}_2]^0 + e^-$, of 0.07 V (1a), 0.20 V (1b), 0.0 V (1c) vs. Ag/AgCl in CH₂Cl₂, all of which are less positive than $E_{1/2}$ of 0.52 V for $(\text{MeC}_6\text{H}_3\text{S}_2)_2$ Ni(II) complex.

With Ni complex, 1a, 1b, or 1c, was found a very effective inhibition of rubrene oxidation by $^{1}O_{2}$ which was generated by the photo-irradiation of the reported procedure. Thus, the decay rate, 2.0×10^{-7} mol dm $^{-3}$ s $^{-1}$, of rubrene (initial concentration, 5.0×10^{-5} mol dm $^{-3}$ in $CH_{2}Cl_{2}$) was decreased remarkably by adding 5×10^{-5} mol dm $^{-3}$ of bis(4-N,N-dimethylaminobenzene-1,2-dithiolato)Ni (1a) (see Fig. 2 for the time dependent decay of rubrene). The relative decay rates of rubrene in the presence of 1a-c were found as 1.0 (no quencher), 0.050 (1c), 0.086 (1a), 0.097 (1b), respectively. The apparent $^{1}O_{2}$ quenching rate constant, k_{q} , for 1c was evaluated by the reported procedure as a as a

A conclusion then may be drawn that the NMe $_2$ substituent is very effective to decrease $\Delta E_{\rm NIR}$, extending $\lambda_{\rm max}^{\rm NIR}$ beyond 1000 nm for 1a and 1c. The small $\Delta E_{\rm NIR}$ may give a promising property of similar Ni complexes, as exemplified by the effective inhibition of $^{1}{\rm O}_2$ oxidation of rubrene dye reported herein.

rubrene ; $\lambda_{max} = 528 \text{ nm}$

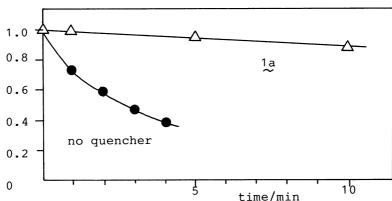


Fig. 2. Quenching of photooxidation of rubrene by bis(4-N,N-dimethylaminobenzene-1,2-dithiolato)Ni(II) (1a). [rubrene]= 5.0×10^{-5} mol dm⁻³; [1a] = 5.0×10^{-5} mol dm⁻³ in methylene chloride. Irradiation by a 500 W Xe lamp (>390 nm).

This work was supported in part by Japan Ministry of Education, Science, and Culture, Grant-in-Aid for Specially Promoted Research for I.T., No. 61065003.

References

- 1) A part of this research was presented at the 47th National Meeting of the Chemical Society of Japan, Kyoto, April (1983).
- 2) a) For review see e.g., J.A. McCleverty, Prog. Inorg. Chem., <u>10</u>, 49 (1968);
 - b) M.M. Ahmad and A.E. Underhill, J. Chem. Soc., Chem. Commun., 1982, 1065;
 - c) M.M. Ahmad and A.E. Underhill, J. Chem. Soc., Dalton Trans., 1983, 165;
 - d) M.G. Miles and J.D. Wilson, Inorg. Chem., 14, 2357 (1975); e) D.J. Carlsson, G.D. Mendenhall, T. Suprunchuk, and D.W. Wiles, J. Am., Chem. Soc.,
 - 94, 8960 (1972); f) G. Consiglio, F. Morandini, and O. Piccolo, J. Chem. Soc., Chem. Commun., 1983, 112.
- 3) NIR region commonly refers to the wavelength region, e.g., of 0.8 2.5 $\mu\,\text{m}_{\odot}$
- 4) D.C. Olson, V.P. Meyweg, and G.N. Schrauzer, J. Am. Chem. Soc., <u>88</u>, 4876 (1966). See also M.J. Baker-Hawkins, E. Billig, and H.B. Gray, J. Am. Chem. Soc., <u>88</u>, 4870 (1966).
- 5) $\frac{2a}{6}$: MS m/e (rel. int.) 299 (M+2, 2), 298 (M+1, 5), 297 (M, 32); $\frac{1}{1}$ H NMR (CDCl₃) δ 7.3, 6.7, 6.5, 3.0, 2.9, 1.9-1.2, 1. -0.7.
 - 2b : Ms m/e (rel. int.) 313 (M+2, 11), 312 (M+1, 22), 311 (M, 100); 1 H NMR (CDCl₃) δ 7.2, 7.0, 3.1-2.6, 2.7, 2.3, 1.9-1.2, 1.0-0.8.
 - 2c : MS m/e (rel. int.) 342 (M+2, 11), 341 (M+1, 22), 340 (M, 100); 1 H NMR (CDCl₃) δ 7.0, 3.3-2.7, 2.8, 1.9-1.2, 1.1-0.7.
- 6) Cf. A. Ferretti, Org. Synth., Col. Vol. V, 419 (1973).
- 7) F.Roehrsheid, A.L. Balch, and R.H. Holm, Inorg. Chem., 5, 1542 (1966).
- 8) a) Ref. 2e; b) B.M. Monroe and J.J. Mrowca, J. Phys. Chem., 83, 591 (1979).

(Received April 23, 1987)